
Delphi

MQI Programming Guide

Delphi MQI Programming Guide by H.J.F. Hasert 1

Table of Contents
Introduction..3
Implementation..3
Usage..3
MQI Calls...3
MQI Record types..4
MQCONNX...6
MQDISC..7
MQOPEN...8
MQCLOSE..9
MQPUT1..10
MQGET...13
MQINQ..14
MQSET..16
MQBEGIN...17
MQCMIT...17
MQBACK..17

Delphi MQI Programming Guide by H.J.F. Hasert 2

Introduction

WebSphere MQ offers several interfaces for application programmers to use. Additional
interfaces are available as a 'SupportPac' offering. This document describes the
SupportPac that delivers MQ functionality to Delphi Pascal programmers as a unit. There
are two units in the package, one for 'bindings' mode (MQI) and one for 'client' mode
(MQIC).

Implementation

One of the implementations of the WebSphere MQI (MQSeries Interface) on Windows is
the 'C' interface. This interface is implemented by a dynamic link library that holds the
calls a 'C' programmer can use to interface with MQ. Pascal implementations like Delphi
can call external functions/procedures easily by declaring them as 'external' and 'C'
versions by adding 'cdecl'. This is how the MQI units define the calls to the 'C' versions.

If that was the only action to take, this supportpac would be a simple one indeed.
However, the MQ interface uses a lot of 'C' structures and a huge number of defines. In
the MQI Units all the structures are coded as Pascal records and all defines are declared
as constants. This facilitates a programming model that looks and feels almost exactly like
the 'C' model. This also means that the 'WebSphere MQ Application Programming
Reference' can be used as a reference for this SupportPac.

Usage
The SupportPac contains two files called 'MQI.PAS' and 'MQIC.PAS'. These are Pascal
sources that should be placed somewhere in the Search Path of Delphi to be included in
your Pascal program. The way to include it is like using any unit in Pascal :

uses MQI;

or

uses MQIC;

MQI Calls

The documentation for the MQI calls can be found in the 'WebSphere MQ Application
Programming Reference'. The MQI calls in the Pascal unit will resemble the ones
described in the MQI 'C' interface, but bear in mind that the 'C' language uses pointers
very explicitly and uses another method to determine the length of a string (which is
marked by a #0 at the end and therefore 'C' strings are called 'null-terminated'). In
Pascal the '@' operator is used to pass a pointer value, so you will see this operator
regurarly when calling external procedures that adhere to the 'C' calling interface.

Delphi MQI Programming Guide by H.J.F. Hasert 3

Another thing to notice is the use of special varable types in the MQ interface, which are
named in all-capitals like MQCHAR48. These types have been added to the MQI units to
remain compatible with the way the 'C' interface is defined.

MQI Record types

The structures you find in the WebSphere MQ Application Programming Reference are
defined as records in the MQI units. There is only one record type that differs from the 'C'
structure definition, the MQCIH record. The 'C' structure uses a member 'Function' which
is a reserved word in Pascal and is abbreviated to 'Func'.

Example

 MQOD = record

 StrucId : MQCHAR4;

 Version : MQLONG;

 ObjectType : MQLONG;

 ObjectName : MQCHAR48;

 ObjectQMgrName : MQCHAR48;

 DynamicQName : MQCHAR48;

 AlternateUserID : MQCHAR12;

 RecsPresent : MQLONG;

 KnownDestCount : MQLONG;

 UnKnownDestCount : MQLONG;

 InvalidDestCount : MQLONG;

 ObjectRecOffset : MQLONG;

 ResponseRecOffset : MQLONG;

 ObjectPointer : MQPTR;

 ResponseRecPointer : MQPTR;

 AlternateSecurityID : MQBYTE40;

 ResolvedQName : MQCHAR48;

 ResolvedQMgrName : MQCHAR48;

 end;

 PMQOD = ^MQOD;

Delphi MQI Programming Guide by H.J.F. Hasert 4

MQCONN

The MQCONN call connects an application program to a queue manager. It provides a
queue manager connection handle, which is used by the application on subsequent
message queuing calls.

Syntax

procedure MQCONN (QmgrName : PMQCHAR48;

Hconn : PMQHCONN;

Compcode: PMQLONG;

Reason : PMQLONG);

Example

var Hconn : MQHCONN;

 CompCode, Reason : MQLONG;

 QMgrName : MQCHAR48;

begin

 QMgrName := ' ' #0;

 MQCONN (@QMgrName, @HConn, @Compcode, @Reason);

 if CompCode <> MQCC_OK then

 writeln('Connect Failed');

end;

Delphi MQI Programming Guide by H.J.F. Hasert 5

MQCONNX

The MQCONNX call connects an application program to a queue manager. It provides a
queue manager connection handle, which is used by the application on subsequent MQ
calls.

The MQCONNX call is similar to the MQCONN call, except that MQCONNX allows
options to be specified to control the way that the call works.

Syntax

procedure MQCONNX (QMgrName : PMQCHAR48;

ConnectOpts : PMQCNO;

Hconn : PMQHCONN;

Compcode : PMQLONG;

Reason : PMQLONG);

Example

var Hconn : MQHCONN;

 ConnectOpts : MQCNO;

 CompCode, Reason : MQLONG;

 QMgrName : MQCHAR48;

begin

 QMgrName := ' ' #0;

 ConnectOpts := MQCNO_DEFAULT;

 MQCONNX (@QMgrName, @ConnectOpts, @HConn, @Compcode, @Reason);

 if CompCode <> MQCC_OK then

 writeln('Connect Failed');

end;

Delphi MQI Programming Guide by H.J.F. Hasert 6

MQDISC

The MQDISC call breaks the connection between the queue manager and the application
program, and is the inverse of the MQCONN or MQCONNX call.

Syntax

 procedure MQDISC (Hconn : PMQHCONN;

Compcode : PMQLONG;

Reason : PMQLONG)

Example

var Hconn : MQHCONN;

 CompCode, Reason : MQLONG;

begin

 { You should have called MQCONN or MQCONNX previously ofcourse }

 MQDISC (@Hconn, @Compcode, @Reason);

 if CompCode <> MQCC_OK then

 writeln('Disconnect Failed');

end;

Delphi MQI Programming Guide by H.J.F. Hasert 7

MQOPEN

The MQOPEN call establishes access to an object. The following types of object are valid:
� Queue (including distribution lists)
� Namelist
� Process definition
� Queue manager

Syntax

procedure MQOPEN (Hconn : MQHCONN;

ObjDesc : PMQOD;

Options : MQLONG;

Hobj : PMQHOBJ;

CompCode : PMQLONG;

Reason : PMQLONG);

Example

var Hconn : MQHCONN;

 Hobj : MQHOBJ;

 ObjDesc : MQOD;

 Options, CompCode, Reason : MQLONG;

 begin

 { Calling the MQCONN procedure to get a valid connection handle was left out ! }

 Options := MQOO_FAIL_IF_QUIESCING + MQOO_OUTPUT;

 ObjDesc := MQOD_DEFAULT;

 with ObjDesc do

 begin

 ObjectName := 'LOCALQ.QUEUE'#0;

 end;

 MQOPEN (Hconn, @ObjDesc, Options, @HObj, @Compcode, @Reason);

 if CompCode <> MQCC_OK then

 writeln('Open Failed');

end;

Delphi MQI Programming Guide by H.J.F. Hasert 8

MQCLOSE

The MQCLOSE call relinquishes access to an object, and is the inverse of the MQOPEN
call.

Syntax

procedure MQCLOSE (Hconn : MQHCONN;

Hobj : PMQHOBJ;

Options : MQLONG;

Compcode, Reason : PMQLONG);

Example

var Hconn : MQHCONN;

 Hobj : MQHOBJ;

 Options, CompCode, Reason : MQLONG;

begin

 { Calling the MQOPEN procedure to get a valid object handle was left out ! }

 Options := MQCO_NONE;

 MQCLOSE (Hconn, @Hobj, Options, @Compcode, @Reason);

end;

Delphi MQI Programming Guide by H.J.F. Hasert 9

MQPUT1

The MQPUT1 call puts one message on a queue. The queue need not be open.

Syntax

procedure MQPUT1 (Hconn : MQHCONN;

ObjDesc : PMQOD;

MsgDesc : PMQMD;

PutMsgOptions : PMQPMO;

BufferLength : MQLONG;

Buffer : PChar;

CompCode : PMQLONG;

Reason : PMQLONG);

Example

var Hconn : MQHCONN;

 ObjDesc : MQOD;

 MsgDesc : MQMD;

 PutMsgOptions : MQPMO;

 BufferLength : MQLONG;

 Buffer : array [0..1024] of Char;

 CompCode, Reason : MQLONG;

begin

 { Calling the MQCONN procedure to get a valid connection handle was left out ! }

 Buffer := 'This message was sent from Delphi'#0;

 BufferLength := 33;

 MQ_od := MQOD_DEFAULT;

 with MQ_od do

 begin

 ObjectName := 'LOCALQ.QUEUE'#0;

 end;

 MsgDesc := MQMD_DEFAULT;

 PutMsgOptions := MQPMO_DEFAULT;

 MQPUT1 (Hconn, @ObjDesc, @MsgDesc, @PutMsgOptions,

Delphi MQI Programming Guide by H.J.F. Hasert 10

 BufferLength, @Buffer, @Compcode, @Reason);

 if CompCode <> MQCC_OK then

 writeln('PUT1 Failed');

end;

Delphi MQI Programming Guide by H.J.F. Hasert 11

MQPUT

The MQPUT call puts a message on a queue or distribution list. The queue or distribution
list must already be open.

Syntax

procedure MQPUT (Hconn : MQHCONN;

Hobj : MQHOBJ;

MsgDesc : PMQMD;

PutMsgOptions : PMQPMO;

BufferLength : MQLONG;

Buffer : PChar;

CompCode: PMQLONG;

Reason: PMQLONG) ;

Example
var Hconn : MQHCONN;

 Hobj : MQHOBJ;

 MsgDesc : MQMD;

 PutMsgOptions : MQPMO;

 BufferLength : MQLONG;

 Buffer : array [0..1024] of Char;

 CompCode, Reason : MQLONG;

begin

 { Calling the MQCONN or MQCONNX and MQOPEN procedure to get a valid }
 { connection handle and object handle was left out ! }

 Buffer := 'This message was sent from Delphi'#0;

 BufferLength := 33;

 MsgDesc := MQMD_DEFAULT;

 PutMsgOptions := MQPMO_DEFAULT;

 MQPUT (Hconn, Hobj, @MsgDesc, @PutMsgOptions,

 BufferLength, @Buffer, @Compcode, @Reason);

 if CompCode <> MQCC_OK then

 writeln('PUT Failed');

end;

Delphi MQI Programming Guide by H.J.F. Hasert 12

MQGET

The MQGET call retrieves a message from a local queue that has been opened using the
MQOPEN call.

Syntax

procedure MQGET (Hconn : MQHCONN;

Hobj : MQHOBJ;

MsgDesc : PMQMD;

GetMsgOptions : PMQGMO;

BufferLength : MQLONG;

Buffer : Pchar;

DataLength : PMQLONG;

CompCode: PMQLONG;

Reason : PMQLONG);

Example
var Hconn : MQHCONN;

 Hobj : MQHOBJ;

 MsgDesc : MQMD;

 GetMsgOptions : MQGMO;

 BufferLength, DataLength : MQLONG;

 Buffer : array [0..1024] of Char;

 CompCode, Reason : MQLONG;

begin

 { Calling the MQCONN or MQCONNX and MQOPEN procedure to get a valid }
 { connection handle and object handle was left out ! }

 BufferLength := 1024; DataLength := 0;

 MsgDesc := MQMD_DEFAULT;

 GetMsgOptions := MQGMO_DEFAULT;

 MQGET (Hconn, Hobj, @MsgDesc, @GetMsgOptions,

 BufferLength, Buffer, @DataLength, @Compcode, @Reason);

 if CompCode <> MQCC_OK then

 writeln('GET Failed');

end;

Delphi MQI Programming Guide by H.J.F. Hasert 13

MQINQ

The MQINQ call returns an array of integers and a set of character strings containing the
attributes of an object. The following types of object are valid:

� Queue
� Namelist
� Process definition
� Queue manager

Syntax

procedure MQINQ (Hconn : MQHCONN;

Hobj : MQHOBJ;

SelectorCount : MQLONG;

Selectors : PMQLONG;

IntAttrCount : MQLONG;

IntAttrs : PMQLONG;

CharAttrLength : MQLONG;

CharAttrs : PMQCHAR;

CompCode : PMQLONG;

Reason : PMQLONG);

Example
var Hconn : MQHCONN;

 Hobj : MQHOBJ;

 ObjDesc : MQOD;

 Selectors : array [0..2] of MQLONG;

 Options, CompCode, Reason : MQLONG;

 QMgrName : MQCHAR48;

begin

 QmgrName := ' '#0;

 MQCONN (@QMgrName, @HConn, @Compcode, @Reason);
 if CompCode <> MQCC_OK then
 writeln('Connect Failed');

 ObjDesc := MQOD_DEFAULT;

 with ObjDesc do

Delphi MQI Programming Guide by H.J.F. Hasert 14

 begin
 ObjectQmgrName := QMgrName;
 ObjectType := MQOT_Q_MGR;
 end;

 Options := MQOO_INQUIRE + MQOO_FAIL_IF_QUIESCING;

 MQOPEN (Hconn, @ObjDesc, Options, @HObj, @Compcode, @Reason);
 if CompCode <> MQCC_OK then
 writeln('Open Failed');

 Selectors[0] := MQCA_Q_MGR_NAME;

 MQINQ (Hconn, Hobj, 1, @Selectors, 0, nil, MQ_Q_MGR_NAME_LENGTH,
 Buffer, @Compcode, @Reason);
 if CompCode <> MQCC_OK then
 writeln('Inquire Failed');
end;

Delphi MQI Programming Guide by H.J.F. Hasert 15

MQSET

The MQSET call is used to change the attributes of an object represented by a handle.
The object must be a queue.

Syntax

procedure MQSET (Hconn : MQHCONN;

Hobj : MQHOBJ;

SelectorCount : MQLONG;

Selectors : PMQLONG;

IntAttrCount : MQLONG;

IntAttrs : PMQLONG;

CharAttrLength : MQLONG;

CharAttrs : PMQCHAR;

CompCode : PMQLONG;

Reason : PMQLONG);

Delphi MQI Programming Guide by H.J.F. Hasert 16

MQBEGIN

The MQBEGIN call begins a unit of work that is coordinated by the queue manager, and
that may involve external resource managers.

Syntax

procedure MQBEGIN (Hconn : MQHCONN;

BeginOptions : PMQBO;

CompCode : PMQLONG;

Reason : PMQLONG);

MQCMIT

The MQCMIT call indicates to the queue manager that the application has reached a
syncpoint, and that all of the message gets and puts that have occurred since the last
syncpoint are to be made permanent. Messages put as part of a unit of work are made
available to other applications; messages retrieved as part of a unit of work are deleted.

Syntax

procedure MQCMIT (Hconn : MQHCONN;

 CompCode : PMQLONG;

 Reason : PMQLONG);

MQBACK

The MQBACK call indicates to the queue manager that all the message gets and puts
that have occurred since the last syncpoint are to be backed out. Messages put as part of
a unit of work are deleted; messages retrieved as part of a unit of work are reinstated on
the queue.

Syntax

procedure MQBACK (Hconn : MQHCONN;

CompCode : PMQLONG;

Reason : PMQLONG);

Delphi MQI Programming Guide by H.J.F. Hasert 17

